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On the spectral theory of Rayleigh’s piston 
11. The exact singular solution for unit mass ratio 

M R Hoare and M Rahmanf 
Department of Physics, Bedford College, University of London, Regent’s Park, London 
NWl, UK 

Received 31 May 1973, in final form 28 January 1974 

Abstract. We have solved exactly the singular eigenvalue problem governing the relaxation 
of velocity for a one-dimensional ensemble of test particles in a heat bath of similar objects. 
This corresponds to the special case of Rayleigh’s piston with mass ratio unity. 

The eigenfunctions prove to be singular schwartzian distributions involving a combina- 
tion of delta functions and Hadamard pseudofunctions. No discrete eigenvalues occur other 
than the isolated point I = 0, and, correspondingly, no regular eigenfunctions other than the 
equilibrium maxwellian, to which the whole continuum set is orthogonal. The singular 
eigenfunctions divide naturally into even and odd subsets such that the former, involving 
only delta functions, govern the half-range problem for the evolution of the speed rather than 
the velocity ensemble, while the latter express all directional information. 

Orthogonality and completeness relations are established and the initial-value problem 
for the relaxation of an initial 6 ensemble is considered. Speed relaxation proves relatively 
simple and a closed form can be derived for the time-dependent distribution function. 
Velocity relaxation is considerably more complex, but can be specified in terms of standard 
solutions to a Carleman-type integral equation. 

1. Introduction 

The general Rayleigh model, which we described and began to investigate in part I 
of this series (Hoare and Rahman 1973) leads, for all its apparent simplicity, to a number 
of delicate mathematical problems. One surprising turn which our investigations have 
taken is the discovery that, in the simplest special case, where the masses of test particles 
and heat-bath particles are put equal, an exact solution to the singular eigenvalue prob- 
lem may be obtained, which involves a quite unfamiliar combination of ordinary and 
generalized functions. 

Since this both serves as an introduction to the complexities of the problem at general 
mass ratio and is also of interest in its own right as a rare and possibly unique example 
of an exactly-soluble singular master equation, we shall treat it here in some detail 
before continuing with what will necessarily be a more qualitative account of the full 
model. 

Other types of one-dimensional gas model have recently attracted considerable 
attention, particularly through the work of Jepsen (1965) and Lebowitz et al (1968). 
Although these models also lead to exact solutions, it should be stressed that they are 
entirely different from the Rayleigh model studied here inasmuch as they treat the 
strictly N-body problem of non-penetrating rods constrained on a line, with full allowance 

t On leave of absence from the Department of Mathematics, Carleton University, Ottawa, Canada. 
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for correlation in successive collisions-yet no possibility of velocity relaxation or dissi- 
pation of energy in a heat bath. 

2. The equal mass model 

We consider the special case of an ensemble of Rayleigh pistons responding to a heat 
bath of particles having identical mass M, ie our system consists ofa labelled test particle 
in a one-dimensional gas without position or velocity correlations (figure 1). As before, 
attention is restricted to the spatially-homogeneous case and we seek primarily the 
solution of the initial-value problem for P( V ,  t )  the time-dependent velocity distribution 
function for the ensemble. 

Figure 1. The Rayleigh piston at unit mass ratio. Test particles (shaded) and heat-bath 
particles collide in one dimension, their velocities before (left) and after (right) becoming 
interchanged. Collisions are of three types : A, ‘head-on’ ; B, ‘knocked-on’ ; C, ‘knocking-on’ ; 
the relative probabilities of each changing with test-particle velocity. Collisions B and C as 
drawn above are inverse to each other. 

The masses of all particles being equal, a considerably simplified kernel is obtained 
for the probability flux in transitions from velocity Vto velocity in dV’ about V’. We 
find (cf equation (2.4) of I) : 

= nalV- V‘lfM( V’) (2.1) 

where n is the number density of heat-bath particles, a is the test-particle cross section, 
M is the mass of both system and heat-bath particles, Tis the temperature of the heat 
bath, andJ,( V )  is the one-dimensional maxwellian for mass M .  

Given the well known result that equal mass particles in one dimension simply 
exchange their respective velocities on collision, the form of the kernel becomes virtually 
self-evident. In terms of individual collisions (though not, of course, the ensemble 
as a whole) this simple mechanism may be thought of as a process of ‘instant thermaliza- 
tion’. 
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The initial-value problem consists, as before, in obtaining time-dependent solutions 
P( V ,  t )  of the master equation : 

(2.2) 
a m  t )  

~ = j-’ K (  V’ ,  V ) P (  V’, t) d V’ - Z (  V)P( V ,  t )  
at fl 

with P(V 0) a specified initial distribution for the test-particle velocities. The velocity- 
dependent collision number Z ( V ) ,  in which the mass M enters only through the heat- 
bath maxwellian, can be written 

Again it is convenient to scale velocities and time in terms of the reduced variables 

x = (M/2kBT)”’T/ 

y = (M/2kBT)”’I/‘ (2.4) 
T = no(2kBT/7cM)”2t, 

A further modification of the dependent variable 

h(x, T )  = P(X, T )  etx2 

leads to the self-adjoint form of the transport equation 

in which g(x, y )  is the symmetric kernel : 

g(x,y) = Ix-yI exp[-+(X2 +Y’L 
and z(x) is the reduced collision number function : 

z(x) = exp( - x2)+ zl”x erf(x). 

We now seek solutions by a separation of variables in the form, 

h(x, T )  = $(x) e-’r 

and in this way are led to the singular eigenvalue problem 

[z(x) - 4$(x, 4 = g(x, Y)$(Y, 4 dy. (2.10) 

The singular character arises not from the integral but from the term [z(x)- A] which may 
evidently vanish for combinations of x and A when 1 < < 00. To make this more 
explicit, the eigenvalue condition can be written 

%$(x, 4 = M x ,  4 

where 2 stands for the singular integral operator with kernel? 

w, y )  = Z(X)d(X - Y) - g(x, y) .  (2.1 1) 

t In this context the function z (x )  is sometimes referred to as a ‘multiplicative operator’ (see eg Cercignani 
1969, Tokizawa 1970). 
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The difficulties attending the construction of full solutions P(x, t) from terms of 
type (2.9) have been discussed in detail in I (see also Hoare 1971). In the present case 
we expect them to take the form 

In this the first term is the equilibrium maxwellian, arising from A = 0, the second is 
the contribution from discrete relaxation modes with 0 < A k  < 1 in the t time scale 
and the third gives the influence of the continuous spectrum-the totality of the interval 
(1, CO), where the equation z(x)-A = 0 has real roots x = kx, .  We recall that the 
reality of all eigenvalues and the positive definiteness of the spectrum is guaranteed 
by the symmetry of the kernel g(x, y) and the conservation of probability underlying 
equation (2.2). The expansion coefficients ak and the function LO@) are to be determined 
by the initial condition P(x, 0 ) ;  their existence (in the sense that the right-hand side of 
(2.12) can be made to converge in the mean to the correct P(x,  7) for all t) is not a foregone 
conclusion but requires the completeness of the solution set {4k(x), 4(x, L)} with respect 
to a sufficiently inclusive class of physically interesting probability functions. Since the 
eigenfunctions 4(x, 1.) prove to be distributions in the sense of Schwartz, proof of com- 
pleteness and construction of the expansion function 4 2 )  are somewhat complicated. 

3. Emptiness of the discretum 

A distinguishing feature of the Rayleigh problem for equal masses is that there prove to 
exist no discrete eigenvalues dk in the allowed interval 0 < < 1. This leaves only the 
singular eigenfunctions 4(x, A) as the basis for constructing the transient part of the 
initial-value solutions. 

In order to prove the emptiness of the discretum it is convenient to work not with the 
symmetric eigenvalue equation (2.10) but with a simpler, unsymmetric form obtained 
by substituting 

f ( x ,  A) = e*x2$(x, A). (3.1) 

The integral equation now becomes 

which may then be reduced to a differential equation by use of the symbolic operation 
(d2/dxZ)Ix - yl = 26(x - y). Thus we find 

(3.3) (d2/dx2){ [z(x) - i]f(x, A)} = 2e-x2f (~ ,  A). 

The solution of this, which we have already sketched in part I, follows straight- 
forwardly on noting the simple first and second derivatives of the function z(x). Thus, 
from (2.8), we see that 

z’(x) = n1I2 erf(x) (3.4) 

z”(x) = 2 exp( - x2). (3.5) 
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Given the relation (3.5) one solution of (3.3) can be seen immediately to bef(x, 1) = A,  
an arbitrary constant. A second, independent solution then emerges as 

(3.6) 

Since for the moment we confine interest to the region I c 1, the denominator cannot 
vanish and the indefinite integral is a proper one. The general solution to (3.3) can thus 
be written 

(3.7) f(x, A) = A + BR(x, A) 

where we have now specified 

s: [z(Y;: 212’  
R(x, A) = 

It remains to substitute back into the original integral equation (3.2) so as to fix 
the constants A and B according to the boundary conditions implicit in this and arrive 
at eigenvalues, if any, in the discretum range A < 1. The manipulation involved is not 
entirely straightforward and we require a number of indefinite integrals, which will also 
be useful later. In particular we define and evaluate by partial integration the two 
functions : 

Ql(x, A) = Jx e-X2R(x, A) dx 
(3.9) 

= fR(x, A)z‘(x) + ~ [ z ( x )  - A] - ’ 
and 

QAx, A) = s’; x e-X2R(x, A) dx 

In proving the second we have used the special relationship 

z(x) = e-x2+xz’(x). 

Taking these results together with the limit 

we arrive at the following condition to be satisfied : 

(3.10) 

(3.1 1) 

(3.12) 

(3.13) 
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Because the integral on the right cannot vanish, it follows that the only possible condition 
for non-singular solution with 1 > 0 is the trivial one A = B = 0. Note that, when we 
allow the special case 1 = 0, the condition changes to A arbitrary, B = 0, and we recover 
the equilibrium solution f(x, 0) = A already determined. 

We thus conclude that, with 1 in the range 0 e 1 < 1, for which the occurrence of 
eigenvalues is at first conceivable, none actually occur. The discretum is empty. 

4. The continuum eigenfunctions 

With the discretum empty, the interpretation of the initial-value solution (2.12) turns 
entirely upon the nature of the continuum eigenfunctions 4(x,A) with ,? 2 1. These 
are no longer square integrable on ( -  CO, + 00) and must be considered as generalized 
functions, singular distributions in the sense of Schwartz. Nevertheless, they can be 
expected to show an orthogonality property arising from the symmetry of the original 
integral operator, In the following sections we shall determine the explicit form of the 
functions 4(x, A), demonstrate their orthogonality and completeness and obtain the 
normalization integrals required for the initial-value expansion functions o(i). 

The general character of the solutions of the singular differential equation (3.3) 
has already been exposed in the previous section, except that a radical change in the 
interpretation of R(x,  1) is needed for 1 2 1. The appropriate extension is well known 
in distribution theory, though we are not aware of any previous occurrence in statistical 
physics. The ‘function’ R(x, 1) is to be considered as a pseudofunction belonging to the 
class of singular distributions generated by Hadamard’s finite part of a generally diver- 
gent integral (see Schwartz 1966, chap 2, p 38, Zemanian 1965, & 1.4 and 2.5). As 
such it is undetermined at the points x = +xl ,  but well defined in its action on a given 
test function d x ) .  Following the above authors we write 

with the integral now taken as definite. The functional ( R ,  cp) arising by action of R 
is then understood as 

(4.2) 

where F p  indicates the taking of a Hadamard finite part whenever the range of integra- 
tion includes the singularity at x = x,?. A more detailed account of the function 
R(x,  A) and the process of extracting finite parts will be found in the appendix. 

4.1. The singular boundary conditions 

Following the usual requirement for the solution of singular equations (see eg Cercignani 
1969) we are forced to augment the solutionf(x, A) with a delta function at the singularity. 

t We follow Zemanian (1965) in distinguishing between the actual pseudofunction (Pf.) and the finite part 
arising in a given application of it under an integral (Fp). Schwartz uses the Pf. notation in both cases. In the 
following we shall drop the prefixes in detailed mathematics whenever it is clear from the context that singular 
integrals are involved. 
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Thus the correct form off(x, A) over the whole range of x and A is 

f (x ,  A) = A(A) + B(A)G[z(x) - A] + C(A)Pf. R(x, A) (4.3) 

where A, B and C are as yet undetermined functions of I over the region I. > 1. 
The problem of fitting the three arbitrary functions to the boundary conditions 

implicit in the integral equation (3.2) remains one of considerable complexity. Recalling 
the root condition z(kxJ-A = 0, it will be convenient to divide the x axis into three 
regions, which we shall designate as follows 

a,  : --CO < x < -x2 

9, : -x1 < x c XA 

a3 : XA<X<Co, 

such that the singularities occur only at the two boundaries. Recognizing that the 
solution of equation (2.10) may well require different values of the constants for each 
region we assume the form 

Here we have made the only obvious simplification, omitting the delta function from the 
region W2. 

We must now carry out the tedious process of substituting each of the above alterna- 
tives back into the original integral equation. Since the three regions require broadly 
similar manipulations, only the process for the region 9, will be described in any detail. 

4.2. The region 9, 

Substituting the solution (4.4) into the integral equation (3.2) the action of the integral 
operator on the right becomes 

(4.5) 

where the functionsf,,f, andf, represent the alternatives forf(x, A)  in the three regions 
according to (4.4). Consider now the integral labelled TI above. This splits into some 



Spectrum of the Rayleigh piston 1077 

eight further integrals as follows : 

J - -z  

= A ,  [x( e-y2 dy- h” e-y2 dy) + y e w y 2  dy- 1: m y e-Y2 dy 1 
1 - xa 

(x - y) e-y2 6[z(y) - I.] dy + IX ( y  - x) ePy2 6 [ z ( y )  - A] dy 

+Cl[  J:m (x-y)e-y2 R(y,A)dy+ j:‘*(y-x)e-y2 R(y, A)dy] (4.6) 

with the taking of finite parts implied in the last term. Of these terms, that multiplying 
C1 proves to be the most crucial. The integrals in the second part involve generalizations 
of the quantities Ql(x, A) and Q2(x, A) in the limit where the singularity moves to the end 
point. Modifying the results (3.9) and (3.10) to read 

(4.7) Pf. Ql(x, A) = +Pf. R(x, L)z’(x)++Pv [ z ( x ) - L ] - ~  

Pf. Qz(x, A) = 3xPv [z(x) -~ , ] -~  ++Pf. (A-e-X2)R(x, A) 

and 

(4.8) 

(note that the Cauchy principal value Pv can replace the Fp prescription when the 
singularity is logarithmic and not at an end point), we see that the integrals in question 
are undoubtedly divergent in the limits Q1(xl, A), Q2(x,, I.). Before drawing conclusions 
from this, however, we still need the results of substitution in all three regions. Still 
working in 9, the group of integrals A , [  3 may be considered. A series of elementary 
integrations reduces this to 

A , [  3 A,[z(x) + + ~ ( 7 c l ’ ~  + z’(x,) - + e-”;)]. (4.9) 

Lastly, the delta function terms with coefficient B ,  yield 

(4.10) 

Here we have used the prescription (Jones 1966, p 150) 

6 f(x)6(x - b) dx = f f ( b ) .  (4.1 1) 

Other properties of the delta function which we shall need constantly are the relation 

6 f(x)d[g(x) -g(c)l dx = I” - ‘f(c) (a  < c < b)  (4.12) 

and the convolution 

S(x)*G(y) = I 6 ( x  - w ) ~ ( w  - y )  dw = 6(x - y) .  (4.13) 
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Addition of these results completes the evaluation of the term Tl in equation (4.5). 
It is now necessary to carry out similar reductions for the integrals Tz and T3 before the 
test of the solution in 9, is complete. The whole procedure is then repeated in broadly 
similar fashion for the regions W2 and 9,. When finally composed from these results, 
the condition for solution in g1 takes the form 

- AA , = ($(A,  - A ,) e-”? + 3 B 3  - B,)x, e-”?/z’(x,) - Cl($- 11’ + $AR( CO, 1.) + Qz(xA)) 

+2CzQz(xd)+ C3($7~-’” +$Wa, A)-Qz(xa))} 

+ X [ $ C ” ~ ( A ,  - A ~ ) + ~ z ’ ( x J ( A ~  -2Az + A 3 ) - 3 B 1  +B,) e-”;/z’(x,) 

+ (C3 - Ci)Q i (xJ  -%Ci + C3)n”ZR(a, A)]. (4.14) 

In the above equation, factors of z(x) have already been cancelled, leaving it only neces- 
sary to force solution by the two conditions 

[ 1 = 0 ,  { }+AA, = o .  

4.3. The full range 

A pair of equations of this type is obtained for each region making in all six equations 
in eight unknowns. The remaining information will prove to be contained in an analy- 
ticity condtion and a normalization. The six explicit conditions take the following form 
(note that R(co, n) is here an ordinary function of n the taking of the necessary finite 
part being implied) (from 9,): 

& T ~ ’ ~ ( A ,  -A3)+KA1 - 2 A,+ A,)Z’(X,) -@, + 8,) e-”;/z‘(x,)-(C, - C3)Ql(x,) 

-&-F(C1 +C,)R(co, A) = 0. (4.15) 

$ A ,  - A , )  e - ” 3 + & ~ ,  -B,)x, e-”?/z’(x,)-%C, - C,)(n- 1/2+AR(m, I.)) 

-(Cl - ~ C Z + C ~ ) Q ~ ( X ~ ) + A A ~  = 0. (4.16) 

(from 9J: 

$ A  I - A3) (n  ‘ I 2  - z‘(x,)) + $B - B,) e -“:/z’(x,) + (C , + C,) (Q l(xa) - $n’/’R( “o, A)) 
-2C2Qi(xd = 0 

+ ( A ~  -Uz + A , )  e-”:+@, +B,)x, e-Xf/z’(x,)-+(~l - C , ) ( ~ - ~ / ~ + A R ( C C ,  A) 
-2Q2(xd))+j.AZ = 0 (4.17) 

(from g3): 

$n1’’(A1 -A3)-$A1 - 2A2 + A3)z’(x,)+@, + B 3 )  e-”X/z‘(x,)+(C, - C,)Q,(x,) 
-+r1’2(C1 + C,)R(oo, A) = 0 (4.18) 

%A 1 - A3 1 e-”? + $B1 - B3)xd e-”i/z’(x,) + &Cl - C3)(n- + AR( CO, A)) 
+ ( C ~ - ~ C ~ + C ~ ) Q ~ ( X J + A A ~  = 0. (4.19) 
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We first make use of the analyticity condition. Since both Ql(xa) and Q2(xa) are 
known to be singular, it follows that the coefficients of these terms must vanish. Thus 
each of the three sets of equations consistently require 

c,  = c, = c,. (4.20) 

Simple algebra then leads to the following connections : 

B , = ( A  , - A ,) eX~[[z’(xa)l2 

B ,  = ( A ,  + A , )  exj[z’(xz)]2 

A ,  = - A ,  

c, = c, = c3 = A,/R(co, A). 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

We have thus been able to reduce the form of the solution to one containing only 
two arbitrary constants A ,  and A , .  Finally, reverting to the original eigenfunctions 
4(x, A) we obtain 

Having thus solved the eigenvalue problem for the singular operator 2, considerable 
work remains before we can exploit the eigenfunctions in an expansion of the initial- 
value solution such as (2.12). In particular we must prove orthogonality and complete- 
ness and determine the normalization function. These questions, all of them problematic 
in view of the singular nature of the distributions involved, will be taken up in &j 5, 6 
and 7. 

Figure 2. Singular eigenfunctions of the Rayleigh piston (y = 1). Left : odd functions I#JOd. 
Right: even functions I#Jev. The delta function components occurring at x = fx, are 
indicated by arrowheads (schematic only) (equations (5,1), (5.2)) .  
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5. Symmetry properties: the half-range problem 

A number of symmetry properties emerge at this stage. We notice first that the eigen- 
function solution just found divides naturally into odd and even components, which 
are simply the terms carrying the coefficients A ,  and A ,  respectively. Thus it is con- 
venient to write 

where 

The general appearance of the odd and even eigenfunctions is illustrated in figure 2. 

scattering kernel with respect to inverse collisions 
The property underlying this simplification is, of course, the symmetry of the 

g(-x,y) = g(x, -Y) (5.3) 

which holds in addition to the reverse collision symmetry, g(x, y) = g(y, x), giving detailed 
balance and reality of 1. 

The symmetry (5.3) has two essential consequences. First, the odd and even compo- 
nents of the solution 4(x, A) must separately be eigenfunctions of the singular operator 
A? (equation (2.1 1)). To see this we symmetrize both sides of the integral equation (2.10) 
and apply (5.3) to give 

+cc 

[z(x) - j.I$ev(x) = + [g(x> Y )  + g(x, - Y ) I ~ ( Y )  d ~ .  (5.4) J- 00 

Because the combined kernel on the right is now even in y, the odd component in 4 
is annihilated and the two terms in the integral contribute identically. Thus it follows 
that XcPev = A4ev and automatically also that X $ o d  = A$od. 

A more physical elucidation of (5.3) is that, if we define a speed kernel, g(x, y) ,  by 
summing over the four combinations of directions : 

t(X, Y) = g(x, Y) + Ax, - Y) + g( - x, Y) + g( - x, - Y) 

then the set {4ev} alone are eigenfunctions of the corresponding half-range operator 
2 which governs the relaxation problem for the probability distribution P(I VI, t ) .  The 
explicit form of the kernel for the half-range operator is easily shown to be 

(5.5) 

this arising in turn by symmetrization and scaling of the actual speed-transition kernel : 

(5.6) 

B(x, y )  = z(x)6(x - y )  - 2 max(x, y) exp[ - +(x2 + y 2 ) ]  

@I VI, I V‘I) = 4na max(I VI, I Y I ) ~ ~ ( V ’ ) .  
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The solution of the speed-initial-value problem is then somewhat simpler than equation 
(2.12) implies, namely 

~ ( 1 x 1 , ~ )  = 271’’’ e-x2+e-*x’ Jlm ml(A)+ev(X, A) d ~ .  (5.7) 

The validity of this expression still depends, however, on our ability to demonstrate the 
half-range completeness of the set {4ev} for a sufficient class of initial conditions P(lxl,O). 
This question is taken up in $ 7 .  We first need to establish the orthogonality of the 
eigenfunctions within the two symmetry subsets. 

6. Orthogonality properties 

Although the symmetry of the original integral equation leads us to believe that the 
eigenfunctions 4(x, A) form a mutually orthogonal set, their singular character makes it 
advisable to check that the relevant integrals do  indeed vanish as expected. Assuming 
that orthogonality can be demonstrated, we shall require in addition the normalization 
function N(A) giving the A dependence of the inner product of each eigenfunction with 
itself. It will be shown that the latter quantity, though also singular, is well defined 
by virtue of the convolution property of the delta functions. Several cases occur. 

(a)  General orthogonality of $(x, A) 

From the general symmetry properties we have, for the full range : 

(40d(A)? 4ev(A) )  = O, 

(d(A), 4(A‘)) = A:(4wdA), 4 o d A ’ ) )  + A%dev(AL 4ev(A’)) .  

(-cc < x < CO), 

from which it follows that the inner products of 4, 4 o d  and 4ev are related through 

(6.1) 
Thus the separate symmetry types may be considered independently. 

(b) Orthogonality of 4(x, A) to the maxwellian 

The simplest case to prove is the orthogonality of the equilibrium eigenfunction 40(x) 
to the whole set 4(x, A)  with 1 < 3. < CO. To show that ($o, +(I.)) = 0 for the full range, 
it clearly suffices to verify that 

jOm e-+x24ev(x, A) dx = 0, 

(40, &A)) = constant x ( JoxA e-x2 dx - jxA [ Z ‘ ( X ) ] ~ ~ [ Z ( X )  - A] dx 

(1 < A < 30). 

Writing the singular part of 4ev explicitly, we see that 
30 

Using now the relations (3.4), (4.9) and (4.10) it is found that both the integrals equal 
hl” erf(x,) and cancel. Thus, as expected 

(40 9 = (40 9 4od(A)) = ($0 9 4 e d A ) )  = range) (6.3) 

( 4 0 * 4 e v O b ) )  = 0 (half range). (6.4) 

and 
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(c) Orthogonality among {$od} and {deV] 
It is somewhat more difficult to prove that the sets {$od} and {$ey) are orthogonal 
within themselves for all values of A > 1, ie that 

m 

$(x, A)~(x,  A’) dx = N(A)6(1- A‘). I m 
(6.5) 

There appears to be no great advantage in treating the symmetry types separately, and 
we have not been able to improve on the direct approach of splitting the integral into 
five ranges and examining each : 

+ X  

($(A), $(A’)) = J- cl; $(x, A)$(x, A’) dx = L-:+ lX: + I:,, + l+ . 
Here we have assumed A’ < l so that correspondingly xI, < xI. 

The detailed examination of the five integrals proves somewhat tedious and the 
symmetry properties are only of slight help. The indefinite singular integrals Q1(x, A) 
and Q2(x, A) (equations (3.9) and (3.10), (4.7) and (4.8)) are required together with the 
related result 

Pf. Q3(x, A, A’) = Pf. eWX2R(x, A)R(x, A’) dx r 
R(x,A) R(x,A‘) 1 

= z’(x)R(x, A)R(x, A‘) + ~ +- +-[R(x, A)-R(x, i’)] (6.6) z(x)-A’ z(x)-A A - A  

(with the prefix Pf. implied as necessary). At each stage care is needed particularly in 
keeping account of the delta functions which arise from integrals with singularity 
at an end point (see the appendix). However, both these and the logarithmic singularities 
arising from (6.6) above cancel correctly, leaving only the essential delta function arising 
from the convolution 6[z(x)- A]*6[z(x) - A‘]. 

The final result is 

($(A), $(XI) = (A:  + ~:)[z’(x,)l~ e+ %(A - A’). (6.7) 

The constants A ,  and A ,  being arbitrary, we can equally well write the conditions 

v(A) = [z’(x,)13 e+”f .  (6.9) 

Various choices are now open for the normalization of the different sets. We shall 
take the odd and even subsets to satisfy (6.8) unchanged and leave the arbitrariness in 
the combinations, writing for the overall normalization function 

N ( 4  = (A:  +A:)v( l ) .  (6.10) 

The persistence of two constants in the final result is no problem, being simply an indica- 
tion that the odd and even components of any function to be represented must appear 
separately throughout, in a way reminiscent of elementary Fourier analysis. 
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6.1. Odd-even symmetry and the initial-ualue problem 

The separability of the eigenfunctions into odd and even subsets has important con- 
sequences for the expression of the time-dependent distribution function P(x, 7). Noting 
that the eigenfunctions $(x, A) can equally well be considered as functions $(x, x,), 
and that dA = z’(x,) dx,, the integral in equation (5.7) can clearly be transformed to one 
over the variable x, with the transient factor exp[ - z(x,)T]. Furthermore, since examina- 
tion of the explicit forms shows that the functions Q(x, x,) are undoubtedly even in xlr 
it follows that w(xJ may also be taken as even, because any odd component would be 
annihilated in the integral. Thus the lower limit can be changed to zero and the modified 
initial-value solution written 

(6.12) 

In the next section we shall detail a constructive proof of the completeness of the 
set of eigenfunctions 4(x, x,) for a satisfactory class, ie one which both demonstrates the 
existence of an expansion function Mx,) satisfying (6.12) in the mean and provides a 
method for obtaining it. 

7. Proof of full- and half-range completeness 

The set {$(x, A)} being defined in terms of a continuous parameter, we may anticipate 
that the representation (6.1 l), if it exists, will be somewhat in the nature of a Fourier 
integral. For our purposes completeness is only required with respect to a satisfactory 
class of probability functions P(x, 0) and proof of it will consist in demonstrating that a 
solution w(A)  always exists such as to make equation (6.1 1) valid for this class?. 

Since the odd and even subsets of the basis separate naturally and moreover have a 
distinct physical interpretation, it will be convenient to treat the completeness of each 
symmetry type separately with respect to probability functions of the same parity. 
This we can do by making the decomposition 

t Validity here implies convergence in the mean for theright-hand side as an upper limit in the integral tends 
to infinity. Experience in transport theory shows that, with singular basis sets, it is not usually possible to 
specify precisely the class of functions for which completeness is guaranteed. This class will, however, usually 
be more comprehensive than that of the L, functions and must be required to include certain distributions 
such as S(x-x,). A common, though rather casual, procedure is to require completeness with respect to a 
class of ‘reasonable’ functions, defined as those whose modulus possesses a Laplace transform. 
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Using the eigenfunctions according to equations (5.1) and (5.2), we then have two 
separate expansion problems 

peV(x, 0) = n-’I2 e-”’+e-fX2 som 0 1(Xl)+ev(X, x,)z’(x,) dx, (7.4) 

and 

P J x ,  0) = e-*”’ w2(x,)4,(x, x,)z’(x,) dx,. (7.5) 

The two expansion functions are designated o1 and w 2 ,  both being, as we have seen, 
even functions. Note that the inclusion of the maxwellian in the even expansion means 
that we are concerned, in effect, only with the component orthogonal to this. 

7.1. Even completeness 

The completeness of the functions +&, A) is relatively easy to settle. Interpreting the 
delta functions in the expressions (5.2), the right-hand side of (7.4) reduces so that 

Pev(x, 0) = z-1/2 e-”’ ++W~(X)[Z’(X)]~ -e-x2 z’(x,)o,(x,) dx,. (7.6) 

Multiplying this equation by exp(x2), differentiating and then using an obvious inte- 
grating factor, we obtain the indefinite integral form below, with jl a constant of 
integration : 

J;, 

Using this back in (7.6), this constant is then found to be 

jl = 4 Sm sgn(x)Pev(x, 0) dx 

(7.7) 

and the final expression for q ( x )  becomes 

The required solution for wl(x) clearly exists and can be determined, given only the 
relatively weak condition that the above integral is finite. 

7.2. Odd completeness 

The completeness condition to be determined through equation (7.5) proves more 
troublesome. Entering the solutions (5.1) into the right-hand side we find 

(7.10) 
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in which we have written 

1085 

(7.1 1) 

Noticing that 

equation (7.10) may be integrated to give 

J;, P&, 0) dx 

+ s’ dy Q2(xA)z’(xl) e -Y2R(~ ,  xl) dx,. 
- m  

Now, using the particular form of the integral (4.7) : 

(7.13) 

e-Y2R(y, x,) dy = f{z’(x)R(x, x,)+Pv[z(x)-z(x,)]-’ + X ” ~ R ( ~ ,  xi)} (7.14) 

and assuming, reasonably, that the required principal values exist, we may invert the 
order of integration in the last integral of the previous expression and write for this 

SI, dY Iom R,(x,)z’(x,) e-Y’R(Y9 X I )  dx, 

m 

= $z’(x) Jo Q2(x,)R(x, x,)z’(x,) dx, 

(7.15) 

On substituting back into (7.13) the following singular integral equation for the function 
R2 is then obtained: 

Pod(y, 0) dy - $z’(x) ex2Pod(x, 0). 

A set of simple transformations puts this into standard notation. We write 

(7.16) 

(7.17) 

(7.18) 
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(7.19) 

and understand the correspondence Q2(x) + Q 2 ( A 0 )  through equation (7.17). The 
equation above is thereby reduced to 

(7.20) 

This is a singular integral equation of Carleman type, familiar in transport theory. 
An elementary account will be found in Tricomi (1957); a more rigorous treatment is 
given by Muskhelishvili (1953). The Carleman equation can be shown by standard 
methods to have a solution expressible in the form 

with 

the Hilbert transform of the function 

X @A) = tan-’ - 
(0.n) a(,I)’ 

(7.22) 

(7.23) 

A number of mild conditions must be satisfied in order that the solution just written 
should be uniquely valid. Of these the most important is that Pod(x,O) be of such a 
form that the function g(x) defined in (7.19) satisfy a Holder condition. This will certainly 
be the case for all ‘reasonable’ initial probability distributionsf. We refer to Wu (1966) 
for further background on singular equations in kinetic theory and to Guernsey (1960) 
for detailed discussion on the conditions for uniqueness of solution. 

Although the relations just written would present severe computational difficulties, 
they nevertheless establish the desired result, namely that an expansion function q ( 2 )  
exists and can be found under quite acceptable conditions on the odd part of the proba- 
bility distribution P(x, 0). Moreover, these conditions certainly admit initial distribu- 
tions of the type 6(x - xo). 

It remains to give the explicit solution for the expansion function Q,(x) of equation 
(7.16). This is 

(7.24) 

Here the functions a, g and 0 take the same forms as earlier, while r is re-interpreted as 

(7.25) 

t Although in the references cited the integral operators are described for other domains such as ( -  1 ,  + l), 
translation of the results for the infinite interval (1,  CO) presents no difficulty. We may note that, since Q,(A) 
vanishes in the interval (0,l) the lower limit in equation (7.20) can equally well be written as zero. 
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8. Fundamental solution of the initial-value problem 

As usual in linear relaxation studies, we focus attention on the ‘fundamental’ initial 
condition 

P(x, 0) = 6(x-x,), (8.1) 

noting that virtually all interesting cases may be treated by superposition of results 
for this choice. 

The separation into odd and even components now reads 

and we seek to construct solutions of type (7.4) and (7.5) through the two expansion 
functions ol(A) and 0 2 ( A ) .  The even component is again determined more straight- 
forwardly and we concentrate on this first. 

On inserting (8.2) into the right-hand side of (7.9) it is found that the crucial term in 
the result is the indefinite integral 

This can be interpreted by symbolic integration by parts to give 

a(x, xo) = 3sgn x)[sgn(x - xo) + sgn(x + xo)] 

= io; 1x1 1x01 

1; 1x1 > 1x01 

and it follows that 

(sgn x)Pev(x, 0) dx = 3 Sm 
The even expansion function then becomes 

Substituting this into (7.6), we arrive at the relatively simple result 

peV(x, t )  = x-lI2 e-X2+~{6(x-xo)+6(x+x0))  e-z(xo)T 

e-x2U(x0, 7 ) ;  1x1 G 1x01 

1x1 > 1x01 -i e-x2U(x, 7 ) ;  

in which the function U(x, t )  has been defined 

(8.4) 

(8.7) 
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Although, as written, V(x, r )  appears to be singular at x = 0, the singularities in the two 
terms in fact cancel and we find, on separating the case 5 = 0, that it takes the simpler 
form 

r = O  

5 > 0. (8.9) 

It is easily verified that 
+ m  J-, P&, 4 dx = 1 

for all (0 < 7 < CO), while the correct limiting behaviour P(x,  0) = 6(x - xo) and 
P(x,  00) = n - ' / 2  exp( - x2) is evident. 

As anticipated, the odd solutions present a much more difficult problem. We can 
only note that the odd component is given by 

PJx, 5 )  = -&z'(x)]'(sgn x)R(co, x) e-'(")'Q,(x) 

-e-"'(sgn x) 1; Q,(y)R(a, y)z'(y) dy 

+e-"* lom Q2(y)R(x, y)z'(y) e-'(y)r dy (8.10) 

with the function Q,(x) to be determined through equation (7.21). Introducing the odd 
component of the delta function, we then find that the function g(x) appearing there 
takes the form 

g(x) = +{sgn(x - xo) - sgn(x + xo)} - 3 ex2z'(x){6(x - xo) - 6(x +xo)}. (8.11) 

Beyond this there seems to be little possibility of obtaining a compact form for the 
evolution of POd(x,5) similar to equation (8.7). It may, however, be verified that the 
solution contains a transient singular term of the form 

[6(x-xo)-6(x+xo)] e-z(xo)r 

plus others which vanish correctly for r + 0 and r + CO. 

9. The speed relaxation 

It seems time to return to the physics of the problem. Clearly a main feature of the 
results is the contrast between the relative simplicity of the even initial-value solutions 
and the considerably more involved form of their odd counterparts. This evidently 
has its origin in the difference between the straightforward relaxation of speed, or kinetic 
energy, by 'instant thermalization' and the much more complex equilibration of direction 
in the ensemble of test particles. This latter process will be characterized by a tendency 
to anticorrelation of direction before and after collisions, moving particles being 
appreciably more likely to make head-on collisions (type A in figure 1) rather than 
knocking-on collisions (types B and C). At the same time the relaxation in the speed 
variable proves more subtle than the picture of 'instant thermalization' would suggest ; 
because both the waiting time between collisions and the probable velocity of the next 
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collision partner are sensitive functions of the test particle's velocity, the latter having 
the modified maxwellian form reflected in the kernel (5.6). 

Nevertheless, the main visible content of the model is to be found in the euen solutions 
and the speed, or energy, relaxation which they express. We shall concentrate on this 
aspect for the remainder of the paper. Writing the speed distribution function with the 
help of (5.7) and the results of the previous section we find that 

with the function V(x, t) defined as before and the initial condition modified to P(lxl,O) 
= S(lx1- Ixol). (Note that the normalization is now over the range 0 < 1x1 < a.) 

The physical interpretation of the various terms is quite clear. The first is the equi- 
librium maxwellian and the second represents correctly the decay of the initial delta 
function. This component alone decays by a simple Poisson process with time constant 
z(xo)- '-vidently the mean waiting time for particles to suffer their first collision. 
Finally the terms with the function U give the more involved transient reflecting the 
spread of velocities after the first collision. Again the solution conserves probability at  
all times and reduces to the singular initial condition as time tends to zero. 

The character of the terms in the function U may be made clearer on observing the 
form the solution takes for the special case 1 < x, << x e 00. Under these conditions, 
the asymptotic expansion for erf(x) may be used to give z(x) - x ' / ~ x .  The solution 
then takes on the simpler form 

x-+ m 

(9.2) 

Surprisingly perhaps, this approximation still conserves probability for all times and 
gives the correct limiting behaviour for both t = 0 and t + CO. Further inspection 
shows that it should also be a satisfactory approximation in the short time regime 
t << 1, whatever the relative values of x and x,-for this reason the expression for 
1x1 G lxol is included above. 

A selection of time dependent distribution functions computed from equation (9.1) 
is illustrated in figure 3. The curves show clearly that, with unit mass ratio, the Rayleigh 
relaxation process is effectively dominated by the distribution of waiting times for colli- 
sion, no persistence of velocity being possible under these conditions in one dimension. 
In each case the delta function decays without tendency to spread in its neighbourhood, 
and it can be seen that, in general, the high-speed tail of the maxwellian is filled most 
rapidly, with equilibration following slowest at near-zero speeds. 
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xo= 0 xo’ I x0=2 

Figure 3. Relaxation of Rayleigh piston ensembles with initial d distributions fix, 0) = 
d(x-x,). The equilibrium maxwellian is shown dotted and the contribution of the delta 
function component is scaled to unity by the single dot. Note the increase in overall rapidity 
of thermalization with higher xo and the preferential filling of the high-speed tail of the 
gaussian at shorter times (equation (10.1)). 

Appendix 

A . l .  The pseudofunction Pf. R(x,  A) 
We shall explain, so far as possible without the apparatus of distribution theory, how 
the pseudofunction Pf. R(x, A) is to be interpreted and how the Hadamard finite part 
may be extracted when it acts on a given test function dx) .  

Technically, the pseudofunction Pf. R(x,  A) satisfying equation (2.10) is the primitive, 
or indefinite integral of the simpler generalized function Pf. [z(x)-A]-’, and its action 
on a test function d x )  is to be understood as 

where the prefix Fp indicates that the Hadamard finite part of the integral is to be taken. 
However, by the definition of the derivative of a distribution, the action of R(x,  A) is 
more conveniently expressed as 

(Pf. R(x,  A), ~ ’ ( x ) )  - (Pf. [Z(X)-~]- ’ ,  d~)) = - Fp 

where, as always, the test functions are assumed correctly behaved at the boundaries. 
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Inasmuch as equation (A.2) is the definition of the solution R(x,A)  of the eigenvalue 
equations (2.10) and (3.3), we may use partial integrations to simplify integrals of type 
(A.2) without hesitation. The extraction of the finite part of the integral above is then 
carried out as follows. We write 

having put 

with y ( z )  the inverse collision number function. I ( € )  is the divergent part of the integral 
to be eliminated. We note that F(z)  is regular across the singularity, taking the value 
F(A) = c p ( ~ ~ ) / n ” ~  erf(x,), but is singular in the limit A + 1 + ,  x A  + 0’. 

Following Hadamard (see especially Zemanian 1965, & 1.4 and 2.5) F(z)  is expanded 
as 

F(z)  = F(A)+F‘(A)(z-A)+IC/(z)(z-A)’ (A > 1 )  (A.4) 

where the function IC/(z), regular at z = A, can be expressed through the Taylor’s theorem 
remainder formula. 

On substituting the expression (A.4) into the integral, the logarithmic terms multi- 
plying F‘(A) are found to cancel and the remaining divergent term proves to be I ( € )  
= 2F(x1)/c. Reverting to the integration over y ,  the required finite part can be written 

Now, although the solution of the singular equation (3.3) need never be considered 
in isolation, it is possible to arrive at a similar type of expression for Pf. R(x,  A) itself. 
Thus, repeating the above analysis for the special case equivalent to putting d y )  = H ( y )  
H ( x - y )  ( H  the unit step function), we can identify R(x,  A) itself with a function taking 
the values 

R(x,A)  FpIOx dy 
[ Z ( Y )  - AI2 

In this form, while R ( x ,  A) remains uninterpreted for x = x A ,  the sense in which the differ- 
ential equation (3.3) is satisfied for any x # x A  is fully apparent. 
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A.2. The integrals Q1, Q 2 ,  Q 3  

Although the above results give insight into the nature of the singular eigenfunctions 
and the way they enter into the initial-value solution, they are not needed explicitly 
in the proofs of orthogonality and completeness. There are several points, however, 
where the subtler aspects of distribution theory cannot be overlooked. A crucial one 
is in the treatment of partial integrations involving a singularity. These occur particu- 
larly in the three integrals 

b 

Q1b, b,  4 = Fp s e-y2Ny, 4 dy 

Q2(a, b ,  4 = FP s Y e - Y 2 N ~ ,  4 dy 

Q&, b,  AA’) = FP 

a 

b 

a 

Ny, W ( y ,  1’) dy 

where, in each case a < xI.  < b.  When the singularity is outside the range of integration, 
naive partial integration using the facts that edY2 = $z”(y), ye-Y2 = -1 4z ” (y) leads 
immediately to the results given (4.7), (4.8) and (6.6). The use of similar results for 
integration across the singularity requires proof that the extraction of finite parts does 
not leave additional terms in the final expressions. This supposes the validity of the 
generalized differentiation formula : 

d 
-Pf. H ( x  - a)H(b  - x ) [ z ( x )  - 11 - 
dx 

l 

= - Pf. H ( x  - a)H(b  - x)z’(x)[z(x)  - ,I]-’ (a  < x A  < b) .  (A.7) 
Standard results for the simpler functions Pf. x - ’  and Pf. x-’  (Zemanian 1965, 5 2.5, 
equations (23) and (24)) suggest that this relation should hold provided that the singularity 
is not at an end point of the range. A detailed analysis of the 6 limit in the corresponding 
partial integration with a test function shows that the equivalence (A.7) is, in fact, 
correct for the open interval a < xi. < b. If xi  is at either end point, however, additional 
constant terms do arise in a manner given by the modified differentiation rule: 

d 
dx 
-Pf. H ( x  - x,)H(b - x ) [ z ( x )  - A] - 

= - Pf. H ( x -  x,)H(b -x)z‘(x)[z(x)  - A ] - 2  

and a similar result, but with change of sign of the singular terms when x A  = b. Thus 
the two cases combined yield (A.7) with cancellation of the singularities. These results 
allow us to manipulate the Q integrals according to the rules of ordinary partial integra- 
tion whenever x ,  is an interior point, while at the same time making quite explicit the 
delta singularities which appear in the integrals Q l ( x )  and Q z ( x )  as x -, x , .  However, 
although end point singularities appear if the limit A -+ A‘ is imposed at any stage of the 
proof of orthogonality given in $ 6 ,  our particular arrangement of the intervals of 
integration enables us to carry all singularities except the crucial d(A-A’) implicitly in 
singular integrals which in the end result cancel. 
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